Соединение деревянных балок между собой



Содержание страницы

Конструкционные особенности двутавра и швеллера и сравнение их прочности

Металлопрокат в виде швеллера и двутавра применяют в разных областях: от машиностроения до создания рекламных щитов. Привлекательность балок заключена в сочетании конструкционных свойств и надежности, обусловленной формой профиля: П- и Н-образной. Благодаря этой особенности металлопрокат выдерживает существенные вертикальные и горизонтальные нагрузки, перераспределяя их по всей своей длине и обеспечивая долговечность сооружению. Что представляет собой каждый из этих материалов и какой прочнее?

Содержание

Особенности металлопроката швеллерного типа ↑

Балки, имеющие в разрезе П-образное сечение, называют швеллерами. Изготавливают их методом холодной или горячей гибки.

Виды швеллерных балок и их размеры ↑

Холодногнутые профили делают из пластичных заготовок, в состав которых входят сплавы цветных металлов, в том числе алюминий, что повышает сопротивляемость коррозии, но снижает степень прочности.

Горячему воздействию подвергают заготовки из стали. Они прочней и надежней, защищены от влаги цинковым покрытием, но стоят дороже и не изобилуют разнообразием форм.

Высота основания стандартных типоразмеров швеллерных профилей (№5 – 40) 50 – 400 мм, толщина профиля варьируется в пределах 0,4 – 1,5 см.

Они незаменимы при возведении конструкции с многочисленными стыками, когда необходимо обеспечить примыкание поверхностей, также их используют в качестве прогонов в каркасах крыш.

Принципы классификации швеллера ↑

Грани по отношению к основанию могут располагаться параллельно или с уклоном различной степени, ввиду этого существует несколько форм швеллерных профилей:

  • С параллельным расположением граней друг к другу и перпендикулярным к основанию. Профиль «П» устойчив к нагрузкам разнонаправленного действия (изгиб, разрыв, сжатие). Поэтому его используют, когда нужно надежное соединение, плотное примыкание элементов.
  • Грани имеют уклон 4-10%. Эти изделия маркируют буквой «У». Внешний контур балок сохраняет образ буквы «П», а вот внутри переход граней в основание происходит не по перпендикуляру, а под углом с уклоном. Поэтому стенки у основания утолщены, а само изделие прочнее. Балки с уклоном используют, когда нужен надежный каркас для высоконагруженной конструкции.
  • Балки с маркировкой «Э» тонкостенные, не способны нести на себе большую нагрузку, поэтому стоят дешевле, чем профили «П» и «У».
  • Маркировка «Л» обозначает легкую серию балок, нагружать которые сверх установленных норм нельзя.

Видео: Швеллер ↑


Швеллерные изделия маркируют цифровыми и буквенными символами, которые обозначают расстояние между гранями в сантиметрах и принадлежность к определенному сортаменту. Например, 12П – грани параллельны и расстояние между ними 12 см.

Кроме того, грани могут иметь неравную ширину, ввиду чего их подразделяют на равнополочные и неравнополочные.

Тип швеллерной балки выбирают на основе расчетов максимальной нагрузки, которую ей придется выдерживать.

Выполнить их сможет только специалист, основываясь на таких величинах:

  • ширина граней швеллера;
  • толщина основания;
  • расстояние между гранями;
  • внутренние радиусы закругления.

Механические характеристики выбранной марки балки должны быть не ниже расчетных. Лучше выбрать изделие на номер выше, иначе надежность конструкции снизится.

Особенность металлопроката двутаврового типа ↑

Внешне двутавр производит впечатление крепкой конструкции, чему способствует его Н-образный профиль.

Именно такая форма дает наилучшее сочетание важных для строительства характеристик: малого веса и высокой механической прочности.

Применение двутавров в строительстве ↑

Жесткие свойства двутавровых балок делают их устойчивыми к прогибанию, скручиванию и обеспечивают большую надежность конструкции, предотвращая такие эксплуатационные явления, как:

Н-образные балки используют для создания опорных колонн, перекрытий, для армирования опалубки, применяя их можно уширить пролеты без потери качества каркаса.

Для целей строительства двутавровый швеллер иногда изготавливают из дерева. Особенно актуален такой вариант для создания каркаса крыши в жилом доме, так как у дерева меньше уровень теплопроводности. Привлекательна деревянная двутавровая балка и с экономической точки зрения: у нее оптимальное соотношение цены и прочности.

Металлические профили сильнее, но обойдутся дороже. Востребованы они в крупнопанельном и промышленном строительстве в качестве главных несущих элементов, где они принимают на себя основную нагрузку.

Типы и маркировка двутавровых балок ↑

Выпускают Н-образные балки с параллельными гранями и расположенными с уклоном. Согласно государственного стандарта, двутавровый профиль маркируется следующим образом:

  • «Б» балки с нормальной шириной полок. Высота основания от 10 до 60 см. Чтобы полки смогли выдержать поступающее усилие на ребро, их утолщают у основания, что затрудняет расстановку заклепок.
  • «Ш» широкополочные. Благодаря хорошей работе на изгиб нашли свое применение в устройстве перекрытий. Широкие полки удобны для посадки в них заклепок. Высота профиля может достигать 1 м.
  • «К» колонные (полки и основание одинаковой ширины). Уникальность таких профилей в наличии жесткости во всех направлениях возможной нагрузки.

В маркировке балок первые две цифры обозначают высоту профиля в сантиметрах, а следующая за ними буква указывает на ширину полок. На прочность двутавровой балки оказывают влияние следующие характеристики:

  • марка стали, для ответственных несущих балок применяют низколегированную сталь;
  • толщина ребра жесткости (основания) и граней;
  • положение граней (параллельно или с уклоном);
  • метод изготовления.

Н-образный металлопрофиль получают двумя способами:

Горячекатанные изделия дешевле и более распространенные, но используемые марки стали требуют дополнительной обработки от коррозии. Несущая способность ниже, чем у сварных аналогов.

Сварные конструкции имеют меньшую общую массу, а вот прочностные характеристики у них выше (нагрузку выдерживают большую, чем горячекатанные варианты). Изделие можно создавать с переменной толщиной профиля и из разных видов стали (одна для граней, другая для основания), а также с перфорацией (просечные отверстия), благодаря которой снижается вес балки, но сохраняется прочность. Также возможно создавать балки на заказ любого размера (не по ГОСТу), без строгих размерных соотношений.

Сравнение двутавра и швеллера на прочность ↑

Ввиду высоких показателей жесткости и прочности целесообразно применение профильных балок в качестве основного стройматериала при возведении домов. Из них сооружают прогоны, лаги, несущие элементы, каркасы, стропильные ноги. Швеллер и двутавр по-разному работают на изгиб, потому имеют разные области применения в строительстве.

В перекрытиях и стропильных системах используют балки как с двутавровым, так и со швеллерным сечением.

Однако у них различная реакция на скручивающую силу, и они по-разному реагируют на локальные и распределенные нагрузки. Ответ на вопрос, что прочнее двутавр или швеллер, кроется в форме поперечного сечения балок.

При одинаковом типоразмере (при идентичных значениях поперечного сечения и массы погонного метра) двутавровый профиль жестче, а значит сопротивляемость нагрузкам и прочность у него выше.

Эту жесткость ему обеспечивают двусторонние ребра. В Н-форме полки выступают по обеим сторонам от основания на одинаковое расстояние, обеспечивая жесткость стенки с двух сторон.

Максимальный объем металла находится в полках и в них возникает напряжение от нагрузок. Весовая нагрузка, воспринимаемая полками, направлена по вертикали, приводит к продольному напряжению и передается на основание в виде сжатия. А вот устойчивость к скручиванию мала.

https://goo.gl/M85PIb Распределение нагрузки в швеллере и в двутавре

У швеллерного профиля из-за П-образной геометрической формы его главная ось инерции выходит за область нагрузки (не совпадает со стенкой). Такая балка в состоянии справиться с поперченными нагрузками и лучше работает на изгиб. В швеллере ребра выступают в качестве односторонних рычагов, увеличивающих силы, стремящиеся скрутить балку. Поэтому балки швеллерного типа целесообразно использовать при боковых нагрузках в легких конструкциях.

Много зависит от распределения, направления и силы нагрузки. Оба профиля плохо справляются с нагрузкой, действующей перпендикулярно плоскости их стенки. Для противодействия неустойчивости балки укрепляют привариванием жестких элементов, бетонированием.

Если вы не знаете, что лучше выбрать двутавр или швеллер для конкретной задачи, лучше обратиться за консультацией к специалисту, который поможет выполнить необходимые расчеты.

Соединение деревянных балок между собой

Данные клиновые анкеры разработаны для сквозного монтажа тяжелых и умеренно тяжелых элементов и конструкций в таких материалах, как бетон, полнотелый кирпич (макс. М8) и природный камень.

Клиновой анкер R-XPT (RAWL) — Данные клиновые анкеры разработаны для сквозного монтажа тяжелых и умеренно тяжелых элементов и конструкций в таких материалах, как бетон, полнотелый кирпич (макс. М8) и природный камень.

Для крепления тяжеловесных конструкций, кабельных трасс, несущих консолей, перильных ограждений и т.п. методом сквозного монтажа к полнотелому бетону, природному строительному камню, полнотелому кирпичу.

Анкерный шуруп Multi-Monti с шестигранной головой идеально подходит для крепления любых деталей в бетонных основаниях без разрушения поверхности самого основания.

Для быстрого крепления к бетону, естественному камню, полнотелому кирпичу; рам, реек, металлических деталей, профилей, гирлянд освещения, пленок, подвесных потолков, противопожарных конструкций, и т.п.

Для крепления канатов, цепей, тросов, электрокабелей, светильников, подвесных потолков и т.п. к бетону и полнотелому кирпичу.

LA — данные забивные анкеры с внутренней резьбой предназначены для тяжелых и умеренно тяжелых нагрузок. Их используют при монтаже в бетон, полнотелый кирпич (макс. М8) и природный камень.

MSA — это анкеры, предназначенные для легких и умеренно тяжелых нагрузок в твердых материалах таких как: бетон, полнотелый кирпич и природный камень.

PFG – это анкеры, предназначенные для тяжелых и умеренно тяжелых креплений в бетоне, полнотелом кирпиче (макс. М8) и природном камне. Это анкеры с большой зоной расклинивания, которые позволяют использовать их для монтажа в материалах более низкого качества, а также при работах в зданиях старой постройки

PFG – это анкеры, предназначенные для тяжелых и умеренно тяжелых креплений в бетоне, полнотелом кирпиче (макс. М8) и природном камне. Это анкеры с большой зоной расклинивания, которые позволяют использовать их для монтажа в материалах более низкого качества, а также при работах в зданиях старой постройки

PFG – это анкеры, предназначенные для тяжелых и умеренно тяжелых креплений в бетоне, полнотелом кирпиче (макс. М8) и природном камне. Это анкеры с большой зоной расклинивания, которые позволяют использовать их для монтажа в материалах более низкого качества, а также при работах в зданиях старой постройки

PFG – это анкеры, предназначенные для тяжелых и умеренно тяжелых креплений в бетоне, полнотелом кирпиче (макс. М8) и природном камне. Это анкеры с большой зоной расклинивания, которые позволяют использовать их для монтажа в материалах более низкого качества, а также при работах в зданиях старой постройки

PFG – это анкеры, предназначенные для тяжелых и умеренно тяжелых креплений в бетоне, полнотелом кирпиче (макс. М8) и природном камне. Это анкеры с большой зоной расклинивания, которые позволяют использовать их для монтажа в материалах более низкого качества, а также при работах в зданиях старой постройки

Для подвешивания отделочных элементов, крепления тяжеловесных конструкций к бетону, строительному камню и кирпичу. Может применяться для крепления к тонким бетонным перегородкам.

Для подвешивания отделочных элементов, крепления тяжеловесных конструкций к бетону, строительному камню и кирпичу. Может применяться для крепления к тонким бетонным перегородкам.

Для подвешивания отделочных элементов, крепления тяжеловесных конструкций к бетону, строительному камню и кирпичу. Может применяться для крепления к тонким бетонным перегородкам.

В ответственных местах при монтаже тяжелого промышленного оборудования, станков, ворот, складских стеллажей и прочих конструкций к бетону, кирпичу, естественному камню.

В ответственных местах при монтаже тяжелого промышленного оборудования, станков, ворот, складских стеллажей и прочих конструкций к бетону, кирпичу, естественному камню.

  • Инжекционная масса 150 (ITH)
    sitefiles/1/4/227/233/image003.jpg

Инжекционная масса ITH 150 – это простой способ крепления в сплошные и пористые материалы. Без запаха. Не требует специального оборудования – используется стандартный пистолет

Инжекционная масса ITH 300 (химический анкер) – это простой, экономичный и надежный способ крепления в сплошные материалы. Смола на основе винилэстера (без стирола), 300 мл

Инжекционная масса ITH 380 (химический анкер) – это быстро затвердевающий состав для сверхвысоких нагрузок.Смола на основе винилэстера (без стирола), 380 мл

ITH 380 W Инжекционная масса «ЗИМНЯЯ» — это простой и надежный способ крепления в сплошные материалы. (без стирола), 380 мл

Инжекционная система «Эпокси» SORMAT ITH 400 EPOX в картридже для бетона на основе эпоксидной смолы – это оптимальное решение для монтажа в бетон резьбовой шпильки и арматуры.

KEM стеклянная капсула со смолой на основе полиэстера

R-KER+ (RAWL) (химический анкер) это быстро затвердевающий состав для сверхвысоких нагрузок.Смола на основе винилэстера (без стирола), 300 мл

R-KEM+ (RAWL) (химический анкер) – это простой, экономичный и надежный способ крепления в сплошные материалы. Смола на основе винилэстера (без стирола), 300 мл

Для крепления в материалах с воздушными пустотами, требуется использование сетчатых гильз IOV / IOV-M

Пистолеты для инжекционной массы и силиконового герметика IPU

Анкерные шпильки (SKA) применяются совместно с инжекционной химической массой(химический анкер) для сквозного монтажа тяжелых и умеренно тяжелых конструкций к таким основаниям , как бетон, кирпич (в том числе и пустотелый), природный камень.

  • Рамный дюбель (дюбель- шуруп) (KDS)
    sitefiles/1/4/7/237/image003-(6).jpg

KDS — применяется для крепления реек, брусков, фасадных и кровельных конструкций, оконных и дверных рам, металлических профилей и др.

KD — Применяется для крепления реек, брусков, фасадных и кровельных конструкций, оконных и дверных рам, металлических профилей и др.

S-UF — универсальный фасадный дюбель с шурупом предназначен для сквозного монтажа креплений для вент. фасадов , а также других конструкций в твердые (бетон/кирпич) и мягкие (газобетон/керамзитобетон/пустотелый кирпич) строительные материлы

RFF — Крепление реек, рам, направляющих, деревянные и металлические элементы конструкции к основаниям из бетона, кирпича, селекатных блоков,блоков керамзитобетона.

MR — для потайного монтажа дверных рам, коробок, блоков в полнотелые материалы: бетон, железобетон, полнотелый кирпич, природный камень.

MSD — для анкеровки в газобетоне и других строительных материалах.

КВТ — специально создан для крепления в газобетон. Широкая резьба на внешней поверхности создает надежное крепление с материалом основания.

KBTM — металлический дюбель для легкого бетона может использоваться как в газобетоне, так и в керамзитобетоне или в соответствии с требованиями пожаробезопасности.

Используется при креплении материалов к пенобетону.

(UNO) — рекомендуется для неизвестных оснований и выработанных отверстий.

(K-FIX) — можно применять практически к любым основаниям (бетон, полнотелый кирпич, природный камень, щелевой кирпич) выдерживает большие нагрузки.

К -дюбель полипропиленовый. Самый массовый тип дюбеля, который можно применять практически к любым основаниям

YLT — используется как в листовых, так в полнотелых и пустотелых материалах.

NAT — дюбель из полиамида (нейлон)

NAT-L — удлиненный дюбель из полиамида (нейлон)

ДГ — для крепления к бетону, полнотелому кирпичу, природному камню, деревянных реек, кабель–каналов, металлических профилей, подвесных потолков.

ZN — используется в основном для установки конструкции подвесных потолков, несъёмного крепления металлических профилей, кабель–каналов, к бетону, камню, кирпичу.

DRA / DRIVA — для крепления картин, светильников, плинтусов, полок, выключателей, в гипсокартоне.

METAL DRIVA — используется для установки в гипсокартоне повышенной прочности, а также ГВЛ, ДСП, фанере.

OLA — для крепления в листовых материалах( гипсокартон, ДСП, фанера, ацеит) толщиной от 10 мм., светильников, плинтусов, выключателей, кабельных каналов и прочих строительных конструкций.

Molly — для крепления различных конструкций к пустотелым основаниям, гипсокартону, дырчатый кирпич, ДСП, ДВП или фанеры.

АМ — применяется для крепления картин, светильников, лектровыключателей, полотенцедержателей, полок, карнизов, желобов для кабелей: в пустотелых плитах, пустотелых кирпичах, гипсокартоне.

TA — для крепления в гипсокартоне, газобетонном блоке, пустотелом блоке Лека, натуральном камне, бетоне, пустотелом и полнотелом кирпиче.

K — для легких подвесных конструкций и при отделки помещения.

S — для легких подвесных конструкций и при отделки помещения.

Устройство деревянных перекрытий в доме из газобетонных блоков

Если строительство дома ведется из газобетона, наилучшим перекрытием для него является деревянное. Это наиболее экономичный вариант, который может изготавливаться своими руками.

Для его установки требуется присутствие всего двух человек. Еще одно преимущество дерева заключается в его небольшом весе, что очень важно для газобетона.

Деревянные перекрытия в доме из газобетона бывают межэтажные, цокольные и чердачные. Принципиальная разница между ними невелика, но имеются некоторые особенности их обустройства.

Материалы для перекрытия

Рекомендуется предварительно подготовить необходимые материалы для обустройства перекрытий. К ним относятся:

  • Деревянные балки. Материал — цельная древесина или клееный брус. Их размеры не должны быть менее 50х150 мм. Они не должны иметь ослабленных зон или крупных сучков, которые могли бы повлиять на их несущую способность. Древесина в момент установки должна быть сухая. Конкретные размеры балок зависят от длины перекрываемого пролета и шага их укладки. При этом обеспечивается расчетная нагрузка в 400 кг на один квадрат перекрытия.
  • Доски для перекрытия и пола.
  • Деревянные лаги.
  • Бруски деревянные 5х5 см.
  • Рулонная и обмазочная гидроизоляция для исключения контакта древесины и газобетона. Если между данными материалами будет прямой контакт, разница теплотехнических характеристик приведет к образованию конденсата, в результате чего дерево будет гнить.
  • Утеплитель типа минеральной ваты.
  • Материал для внутренней подшивки перекрытия. Может использоваться OSB, фанера, вагонка, гипсокартон и т. д.
  • Антисептические и жаропрочные пропитки. Они необходимы для пропитки балок и досок. Пропитки препятствуют гниению дерева, повреждению его вредителями, а также возгоранию.
  • Цемент и песок для создания армопояса.

Изготовление армопояса

Поскольку газоблоки имеют относительно хрупкую структуру, перед обустройством перекрытия на стенах необходимо сформировать армирующий пояс из железобетона. Он равномерно распределит давящие нагрузки по всей площади стен, а также дополнительно укрепит стены дома.

Для создания армопояса используются U-образные газоблоки, которые укладываются в качестве верхнего ряда. При отсутствии таких блоков, их можно изготовить самостоятельно, вырезав углубления в обычном газобетоне. После укладки U-образных блоков, в углублениях формируется силовой каркас из арматуры. Он состоит из четырех продольных прутов, связанных между собой в единую конструкцию. Под нижнюю арматуру подкладываются кусочки древесины для создания под металлом монолитного слоя бетона.

После этого производится заливка в блоки бетона. Поверхность для укладки перекрытия готова. Армопояс можно изготовить и без U-образных блоков, просто произведя заливку бетона в закрепленную поверх стен опалубку, но такой способ слишком трудоемок.

Устройство межэтажного перекрытия

Перечислим порядок выполнения работ по созданию межэтажного перекрытия из дерева.

Укладка балок

Формирование перекрытия начинается с укладки на стены силовых балок. Они укладываются перпендикулярно к длинным стенам дома. Шаг укладки обычно не превышает 1 м. Балки должны заходить на стены не менее 15 см. Вначале устанавливаются крайние балки, которые выводятся по уровню, посредством длинной и ровной доски, поставленной на торец. Плотного примыкания крайних балок к стенам быть не должно. Между ними следует оставить зазор около 3–4 см. Впоследствии этот зазор будет заполнен утеплителем.

Крайние балки крепятся на стене, после чего производится установка остальных балок. Контролируется не только их уровень, но и горизонтальность расположения. Если длина опорных балок оказалась недостаточной, допускается их наращивание таким же материалом. Для этого два бруса соединяются внахлест от 0,5 м до 1 м, после чего крепятся болтами. Такое соединение считается вполне надежным.

Крепление бруса к армопоясу выполняется посредством анкерных пластин в следующем порядке:

  • Торцы балок обрезаются под углом около 70 градусов для обеспечения удаления влаги.
  • Дерево со всех сторон и с торцов покрывается антисептической и жаропрочной пропитками.

Совет: торцы балок нельзя покрывать маслянистыми пропитками или краской. В этом случае будет нарушено испарение влаги из древесины.

  • Части балок, заходящие на стену, обмазываются слоем битумной мастики, и обматываются несколькими слоями рубероида.
  • Балки крепятся анкерными пластинами к армопоясу.
  • Внешние торцы балок с наружной стороны стен утепляются пенополистиролом.

Утепление балок

Производится заполнение пустот между уложенными балками. Это можно делать и кирпичем, но предпочтительнее газоблоками. Между блоками и деревом необходимо оставить зазоры 2–3 см. Эти пустоты плотно забиваются минеральной ватой. Тем самым предотвращается образование конденсата и отсыревание дерева от контакта со стенами.

Укладка наката и утепление перекрытия

Для утепления перекрытия необходимо изготовить накат. Вдоль низа уложенных балок крепятся бруски 5х5 см. Их можно закрепить длинными саморезами. На них укладываются щиты из досок, но можно использовать и отдельные вырезанные куски досок. На доски плотно укладывается утеплитель (минеральная вата или пенополистирол). Рекомендованная толщина утеплителя — от 10 см.

Укладка лаг и настил пола

Поверх созданной конструкции, перпендикулярно балкам, укладываются лаги, которые также предварительно обрабатываются специальными пропитками. Лаги обычно имеют меньшее сечение, нежели балки. Шаг укладки лаг — 50–70 см. Лаги крепятся к балкам. Поверх закрепленных лаг настилаются доски пола. Снизу перекрытие обшивается плитами OSB, ДСП, гипсокартоном или многослойной фанерой.

Устройство перекрытия цокольного этажа

Если перекрытие изготавливается над отапливаемым цокольным этажом, его конструкция ничем не отличается от устройства межэтажного перекрытия. Если же цокольный этаж холодный, типа подвального помещения, имеются некоторые особенности его обустройства.

Поскольку водяным парам свойственно циркулировать из теплого помещения в холодный подвал, теплоизолятор будет впитывать много влаги. Чтобы этого не допустить, поверх него прокладывается слой пароизоляции. Также рекомендуется увеличить толщину слоя утеплителя до 20 см. Все балки, а также прочие деревянные элементы перекрытия должны быть защищены от гниения специальными составами.

Со стороны холодного подвала не рекомендуется устанавливать гипсокартон и ДСП ввиду их гигроскопичности. Рекомендуется подшивать потолок в цокольном этаже влагостойкими плитами OSB.

Устройство чердачного перекрытия

Отличие чердачного перекрытия от межэтажного заключается в отсутствии пола, а также в использовании более толстого слоя теплоизоляции. Если же сверху обустраивается мансарда, то изготавливается и пол.Деревянное перекрытие для стен из газобетонных блоков, при правильной установке, обеспечит надежность и долговечность построенному дому. При этом себестоимость работ и материалов будет гораздо ниже, чем при использовании перекрытий из железобетона.

ТехЛиб СПБ УВТ

Библиотека Санкт-Петербургского университета высоких технологий

Усиление металлических балок, ферм и прогонов

Понятие потери устойчивости очень разнообразно, но основной причиной является недостаточная жесткость сжатого элемента конструкции в плоскости, перпендикулярной действующему усилию.

В результате этого происходит не предусмотренная расчетом деформация элемента, увеличиваются краевые напряжения, процесс деформации развивается, в результате чего элемент выключается из работы или разрушается.

При восстановлении или усилении металлических конструкций необходимо соблюдать следующие правила:

  • проект усиления должен выполняться специализированной (по металлоконструкциям) проектной организацией и должен включать раздел по технологии производства работ;
  • основанием для проектирования усиления металлоконструкции служат материалы натурных обследований, включающие дефектную ведомость со схемами повреждений и предварительные оценки состояния несущих элементов объекта;
  • обследование (освидетельствование) конструкции начинается с изучения имеющейся проектной документации и материалов по ее эксплуатации.

Усиление конструкции посредством увеличения сечения основного несущего элемента

а — усиление металлического элемента деревянными брусьями; б — увеличение несущей способности швеллерной балки обетонированием (приведена схема армирования); в — усиление верхнего пояса и решетки фермы добавлением сплошной полосы между уголками; г — схема раскосной фермы с обозначением усиливаемых элементов стальными полосами или уголками; 1 — усиление стержней фермы полосовым металлом; 2 — усиливаемые стержни

При натурных обследованиях тщательно измеряется каждый элемент конструкции. Сварные швы и прилегающая к ним зона металла осматривается с помощью лупы, причем эта зона на ширину до 20 мм должна быть расчищена от краски и ржавчины до металлического блеска. Высота сварного шва устанавливается с помощью специального шаблона (калибра).

Работу по усилению следует выполнять при отсутствии временных нагрузок и при наружной температуре не ниже минус 15 °С для обычной стали и не ниже минус 5 °С для стали кипящей плавки. Во всех случаях при усилении сварных конструкций под нагрузкой температура металла не должна быть ниже порога хладноломкости.

При усилении швов наплавкой напряжение в усиливаемом элементе не должно превышать 0,8 расчетного сопротивления стали, а с поверхности шва обязательно механическим способом должны быть удалены все дефекты. Запрещается применять комбинированные соединения, в которых часть усилий воспринимается заклепками и болтами, а часть — сварными швами.

Для увеличения пространственной жесткости здания или сооружения рекомендуется использовать следующие способы:

  • постановку дополнительных или перестановку существующих связей;
  • увеличение жесткости горизонтальных связевых дисков покрытия или перекрытия;
  • использование диафрагм жесткости;
  • включение в пространственную работу каркаса таких элементов, как антресольные площадки, тормозные конструкции подкрановых балок, несущие конструкции под технологическое оборудование и т.п.

Для усиления конструкций рекомендуется использовать следующие методы их предварительного напряжения:

  • применение предварительно напряженных тяжей, затяжек и оттяжек;
  • предварительное напряжение регулируемыми распорками;
  • регулировку опор путем их принудительного смещения;
  • устройство шпренгелей;
  • электротермический способ;
  • предварительный выгиб и последующую сварку профилей балок.

Соединение элементов стальных конструкций следует предусматривать, как правило, с помощью сварки с учетом мероприятий по подготовке восстанавливаемых конструкций к сварочным работам (зачистка, выравнивание краев разрыва, засверливание трещин или узких длинных отверстий и т.д.). Не исключается применение болтовых соединений.

Для элементов усиления следует применять сталь того же класса, что и сталь восстанавливаемой конструкции. Тип электродов выбирается в соответствии с классом стали элемента усиления.

Рабочие чертежи конструкций, изготавливаемых заново, а также узлов и участков ремонтируемых конструкций должны содержать схемы расположения усиляемых и новых элементов по видам конструкций (прогоны, балки, фермы и т.д.), рабочие чертежи элементов и узлов, спецификацию стали, а также необходимые требования по технологической последовательности выполнения работ по усилению конструкции, влияющей на эффективность применяемого решения.

Проектирование восстанавливаемых стальных конструкций следует осуществлять, как правило, в одну стадию рабочих чертежей КМД. Дефектные ведомости конструкций должны составляться по пролетам для каждого поврежденного элемента на основании результатов технического обследования. В процессе восстановления следует проверить состояние соединений конструкций, ранее недоступных для осмотра, и включить их в ведомость исправляемых дефектов.

Усиление металлических балок может быть местным (путем установки накладок и ребер) или общим (посредством шпренгелей, изменением опорного сопряжения; наиболее эффективна затяжка вдоль нижнего пояса, при которой несущая способность балки может быть увеличена до 80% при минимальных затратах материала).

Повышение несущей способности изгибаемых элементов достигается при симметричном расположении элементов усиления или создании симметрии относительно нейтральной оси. При этом должна быть обеспечена надежная совместная работа нового сечения с балкой, а вся конструкция не только защищена от коррозии, но и от возникновения «мостиков холода».

Металлические балки можно усилить несколькими способами:

  • установкой дополнительных опор;
  • увеличением сечения накладками, особенно на высокопрочных болтах; шпренгельными системами;
  • изменением опорных сопряжений посредством перевода разрезных балок в неразрезные;
  • регулированием напряжений натяжными и распорными устройствами.

Весьма эффективным и перспективным усилением балочных систем является изменение их расчетной схемы путем создания неразрезной системы и опорных подкреплений, а также регулирования напряжений натяжными и распорными устройствами.

Эти устройства еще мало разработаны, но обладают важными достоинствами в условиях реконструкции действующих объектов, в частности простотой и доступностью приемов и контроля регулирования усилий, исключением громоздкого оборудования при производстве работ, использованием домкратов, муфт и пр.

Способы усиления металлических балок

а, б — накладками; в — обетонированием; г — шпренгелем; д, е — заделкой на опорах; ж, з — сопряжением балок на опорах

Соединение деревянных балок между собой

Расчет балок на прочность обычно ведется по наибольшим нормальным напряжениям, возникающим в их поперечных сечениях. Обозначая эти напряжения , получаем условие прочности в виде

Здесь — допускаемое напряжение, зависящее в основном от материала балки и ее назначения (подробнее о выборе допускаемых напряжений см. § 8.2).

При расчете на прочность элементов конструкций, работающих на изгиб, возможны три следующих вида задач, различающихся формой использования условия прочности (41.7):

а) проверка напряжений (проверочный расчет);

б) подбор сечения (проектный расчет);

в) определение допускаемой нагрузки (определение грузоподъемности).

Методика решения этих задач для балок из пластичных и хрупких материалов различна, так как балки из пластичных материалов одинаково работают на растяжение и сжатие, а из хрупких материалов лучше работают на сжатие, чем на растяжение. Это влияет на применяемые формы поперечных сечений балок и на способ определения опасного сечения.

Известные различия имеются также в расчетах балок постоянного по всей длине и переменного поперечного сечения.

Кроме того, следует иметь в виду, что в некоторых (сравнительно редких) случаях расчет на прочность только по наибольшим нормальным напряжениям, действующим в поперечном сечении балки, недостаточен, и приходится дополнительно производить проверку прочности также по главным напряжениям, возникающим в наклонных сечениях, и по максимальным касательным напряжениям.

Рассмотрим основные случаи расчетов на прочность при прямом изгибе.

Балки постоянного поперечного сечения из пластичных материалов

Пластичные материалы одинаково сопротивляются как растяжению, так и сжатию: в связи с этим для них Поэтому балки из пластичных материалов обычно имеют поперечные сечения, симметричные относительно своих нейтральных осей, при которых в балках возникают одинаковые наибольшие растягивающие и сжимающие напряжения.

В рассматриваемом случае опасным является то поперечное сечение балки, в котором возникает наибольший по абсолютной величине изгибающий момент Мтах. Для этого сечения и составляется условие прочности. Опасными являются точки опасного поперечного сечения, наиболее удаленные от нейтральной оси.

Нормальные напряжения в этих точках определяются [в соответствии с выражением (21.7)] по формуле

Здесь для упрощения индекс при М и W не указан.

Оставить комментарий

avatar
  Подписаться  
Уведомление о