Устройство усилителя звука



Режимы Mute и StandBy в микросхеме TDA7294 / TDA7293

Эти режимы позволяют отключать звук и переводить микросхему в «спящий» режим с пониженным энергопотреблением.

Рис.1. Структура микросхемы 7294

Если включен режим Mute, то входная цепь микросхемы отключается от вывода 3 (см. рис.1) и соединяется с землей (точнее с выводом 4, который должен быть заземлен). Сигнал на выход практически не поступает (по паспорту он ослабляется на 80 дБ = 10 000 раз). Применение — для временного глушения звука (как в телевизоре), и для устранения переходных процессов (щелчков) при включении-выключении.

Если включен режим StandBy, то микросхема переходит в «спящий» режим с пониженным энергопотреблением. При этом происходит следующее: включается режим Mute и кроме того, некоторые из транзисторов микросхемы (в том числе выходные) запираются и практически перестают потреблять ток от источника питания. По паспорту сигнал ослабляется на 90 дБ, а потребляемый микросхемой ток снижается до 1 мА. Применение этому режиму разное:

Во всех этих случаях имеется ввиду, что левый конец резистора на рис.2 подключается или к + питания (микросхема включена), или к земле (микросхема выключена).

Для управления этими режимами служат выводы 10 (Mute) и 9 (Stand-by). Если напряжение на соответствующем выводе меньше, чем +1,5 вольта относительно земли (на самом деле относительно вывода 1, соединенного с землей), то режим включен — микросхема молчит, или вообще отключена. Если напряжение больше +3,5 В, то режим отключен. То есть, микросхема работает, когда напряжение и на выводе 9 и на выводе 10 больше + 3,5 вольт. Такие уровни позволяют управлять усилителем от обычных цифровых микросхем.

Если нет необходимости управлять включением микросхемы или приглушением звука, то выводы рекомендуется использовать для устранения щелчка при включении. Самый простой способ показан на рис.2 — выводы объединяются и подключаются к источнику через резистор и конденсатор. Такое включение задает задержку подачи напряжения на выводы, и в результате микросхема включается на

0,1 секунды после подачи питания и никаких щелчков не наблюдается. Конденсатор должен быть рассчитан на напряжение не меньшее, чем напряжение питания.

Рис.2. Простейший способ управления включением

Для маньяков бесшумного включения (и для наиболее качественного внешнего управления питанием) производитель рекомендует такую схему:

Рис.3. Способ управления включением, рекомендованный производителем

При подаче напряжения сначала микросхема включается с некоторой задержкой (выходит из режима Stand-by), но звука нет. После этого отключается режим Mute, и звук появляется. Выключение по идее идет в обратной последовательности — сначала Mute, после Stand-by. Это происходит из-за того, что при включении управления (подачи + ххх вольт) левый по схеме конденсатор заряжается через два резистора — медленнее, чем правый. А разряжается наоборот быстрее — через диод и один резистор 10 кОм. Диод может быть любой маломощный с допустимым обратным напряжением не менее напряжения питания. Конденсаторы также должны быть расчитаны на напряжение питания.

Только это не лучший способ управления в том случае, если все это хозяйство подключено к «плюсу» питания. Дело в том, что разряд конденсаторов цепей управления выключением происходит гораздо быстрее, чем разряд конденсаторов фильтра питания. Поэтому при включении питания все работает как и описано выше, а при отключении питания режимы Mute и StdBy включатся только тогда, когда напряжение, поступающее с блока питания на микросхему, опустится до

2 вольт. То есть, когда и так уже все замолкло.

Поэтому все эти схемы хорошо работают только на включение, тем не менее, при выключении никаких щелчков и прочих неприятных звуков не слышно — это оттого, что у разработчиков получилась очень неплохая микросхема. Для правильного управления всеми этими режимами можно предложить такую схему (в ней диод должен быть рассчитан на напряжение питания, а конденсаторы на напряжение не менее 16 вольт; R1 должен быть не больше, чем указан на схеме):

Рис.4. Способ управления включением и выключением, максимально использующий возможности управления.

Эта схема работает очень хорошо, если есть какое-то внешнее управление (или управляющее напряжение, или переключатель, как показано на схеме), и неплохо, если никакого специального управления не требуется, а напряжение подается от источника питания (переключатель S1 при этом отсутствует, а цепь, которую он разрывал — замкнута).

Работает она так. При подаче напряжения питания (замыкании S1), конденсатор С1 заряжается через резистор R3 до напряжения, задаваемого делителем R1,R2 (которое примерно равно 5 вольт). А конденсатор С2 в свою очередь заряжается от С1, поэтому он заряжается несколько дольше. Включение производится в такой последовательности: сначала включены оба режима (и Mute, и StdBy). Потом отключается режим StdBy и «внутренности» микросхемы начинают работать как надо. Через некоторое время отключается режим Mute, и сигнал проходит на выход усилителя.

Выключение переключателем. При этом С2 очень быстро разряжается через диод и малое сопротивление R2, устанавливая тем самым режим Mute. Вскоре вслед за ним разряжается и С1 (для разрядного тока R3 и R4 включены параллельно, и разряд идет быстрее), отключая напрочь всю микросхему.

Если выключателя S1 нет, то все работает почти так же. При отключении сетевого напряжения, конденсаторы фильтра питания усилителя начинают разряжаться. Напряжение питания при этом падает. Как только напряжение на делителе R1,R2 станет уменьшаться, конденсатор С2 очень быстро разряжается через диод и устанавливает режим Mute. Чуть позже разряжается С1, включая StdBy. При этом напряжение питания довольно велико (оно делится делителем R1,R2) и до отключения микросхемы никаких нежелательных звуков не возникает (когда микросхема отключается, напряжение питания примерно 10-12 вольт).

Если честно, то цепь, показанная на рисунке 4, является чересчур хорошей — микросхема качественная, и при ее выключении и так никаких щелчков нет. Но если хотите максимальной уверенности, то эта схема для вас.

Guitar Rig 5 Pro — Виртуальный гитарный процессор

Опубликовано: 2016-01-27 / Автор: Сергей Хмарук

В одном из прошлых обзоров мы с вами рассматривали эмулятор гитарного усилителя Revalver MK III, ну а сегодня познакомимся с еще одним виртуальным гитарным процессором, который называется Guitar Rig 5 Pro. Рекомендуем вам также установить данный софт на свой компьютер.

Особенности программы Guitar Rig 5 Pro

Программа Guitar Rig 5 Pro, разработана фирмой Native Instruments, благодаря которой у музыкантов появилась возможность использовать в своем творчестве около 14 уникальных гитарных и басовых усилителей, воссозданных в программе с помощью технологии Dynamic Tube Response – эмуляция лампового усилителя.

В этой программе собрано очень много оригинальных схем многоканальной обработки звука и все специфические характеристики. А вот усилители, применяемые здесь, могут не только передавать звучание своих настоящих прототипов, но и обеспечить вас достаточно большим набором всевозможных настроек звучания для разных жанров музыки.

Matched Cabinets – модуль программы, который поможет вам выбрать подходящую систему динамиков для каждого усилителя. Guitar Rig 5 Pro очень легкая в применении и интуитивно понятная программа. Она может за несколько секунд изменить скучное звучание вашей гитары, придавая новый оттенок композициям. Рекомендуется использовать совместно с Asio4all 2.9 для уменьшения задержек звука.

Скачать бесплатно программу можно по этой ссылке (облако mail.ru).

Устройство усилителя звука

Данный микрофонный усилитель предназначен для контроля звуковой обстановки в помещении и на улице, также может быть использован в радиожучках и в других устройствах шпионажа. Разработан специально для применения в системах видеонаблюдения. Использование миниатюрного активного микрофона обеспечивает качественный звук в области видеонаблюдения, охраны и безопасности.

Отличительная характеристика микрофона — это его высокая чувствительность и низкий уровень шумов встроенного операционного усилителя. Микрофон обеспечивает качественный звук на стандартных мониторах и магнитофонах. Может использоваться совместно с платами аудиоввода Ewclid-A через стандартный линейный аудиовыход. Микрофон имеет иизкое потребление тока. Никелированный корпус защищает схему от электрических помех и шумов. Имеет миниатюрные размеры.

Микрофон подключается к входам видеорегистраторов и видеомониторов, что позволяет без проблем записать разговоры. Подключая к входу усилителя низкой частоты мы получаем микрофон со студейными характеристиками. Микросхему можно найти в автомагнитолах ( они обычно находятся вблизи звукового регулятора. Ознакомтесь с таблицей характеристик микрофона шорох

Параметр — Значение
-Акустическая дальность до 7 метров
-Выходное напряжение — 0, 25В
-Длина линии, до 300 м
-Корпус / материал — цилиндр / никелированный алюминий
-Питание микрофонного усилителя — DC 5…12V
-Потребление — 0,02A

Для того, чтобы сохранить качество сборки желательно не менять номиналы деталей схемы, хотя отклонение емкостей входного и выходного конденсатора допускается! Конструкция собрана на макетной плате, при наличии всех деталей устройство собирается за 20 минут. Микрофон электретный, можно использовать практически любой (например от гарнитуры мобильного телефона), но для повышения чувствительности желательно применить микрофон от китайского бытового магнитофона.

Устройство усилителя звука

Войти через uID

В радиолюбительской практике, особенно в радио-моделизме, часто используются сервоприводы. От точной настройки сигналов, подаваемых на сервоприводы, зависит поведение модели в пространстве. Поэтому так важно заранее определить характеристики сервоприводов до запуска модели в полет, в плавание, на трассу. Для проверки сервопривода «на земле» предназначены устройства, называемые сервотестерами.
В настоящей статье описано как изготовить сервотестер своими руками.

Понадобился мне для дома простейший термометр для измерения, так сказать, «забортной» температуры. Наружного термометра за окном у меня нет, поэтому решил собрать простую схему с выносным датчиком для измерения уличной температуры, чтобы сразу видеть уличную температуру на цифровом табло в помещении.

Очень популярны в настоящее время стали охранные сигнализации для автомобилей, квартир, домов, гаражей и пр. В статье предлагается решение по изготовлению оповещателя охранной сигнализации с регулируемой громкостью.

Катушки индуктивности практически используются почти в любой радио-аппаратуре, и довольно часто перед радиолюбителями возникает вопрос:
Как рассчитать индуктивность той, или иной катушки? Конечно можно рассчитать индуктивность по определённым формулам, но это требует времени, которого радиолюбителям всегда не хватает.

В первом полугодии 2019 года аналоговое телевидение в России будет отключено. В тестовом режиме уже работают передающие станции, транслирующие телевизионные программы в цифровом формате по стандарту DVB-T2. В статье описана простая конструкция телевизионного приемника для приема цифрового сигнала на основе скалера DS.D3663LUA.A82 и матрицы от планшета.

Прогресс не стоит на месте и на смену лампам накаливания приходят энергосберегайки и светодиодные лампы. Но полностью отказываться от ламп накаливания и галогенок ещё не стоит, так как их спектр в световом диапазоне гораздо шире и более приятен для глаз, чем у энергосберегаек и светодиодных ламп, и их ещё довольно много используется и в частном секторе и в организациях для освещения рабочих мест, каких либо объектов, площадей, охраняемых территорий.

Как то раз пришлось разгребать различный хлам в кладовке у товарища, и помогать ему наводить там порядок. И вот на глаза среди хлама попался вот этот интересный блок, который соответственно был немедленно «конфискован», как поощрение за оказанную помощь в уборке.

Режимы Mute и StandBy в микросхеме TDA7294 / TDA7293

Эти режимы позволяют отключать звук и переводить микросхему в «спящий» режим с пониженным энергопотреблением.

Рис.1. Структура микросхемы 7294

Если включен режим Mute, то входная цепь микросхемы отключается от вывода 3 (см. рис.1) и соединяется с землей (точнее с выводом 4, который должен быть заземлен). Сигнал на выход практически не поступает (по паспорту он ослабляется на 80 дБ = 10 000 раз). Применение — для временного глушения звука (как в телевизоре), и для устранения переходных процессов (щелчков) при включении-выключении.

Если включен режим StandBy, то микросхема переходит в «спящий» режим с пониженным энергопотреблением. При этом происходит следующее: включается режим Mute и кроме того, некоторые из транзисторов микросхемы (в том числе выходные) запираются и практически перестают потреблять ток от источника питания. По паспорту сигнал ослабляется на 90 дБ, а потребляемый микросхемой ток снижается до 1 мА. Применение этому режиму разное:

Во всех этих случаях имеется ввиду, что левый конец резистора на рис.2 подключается или к + питания (микросхема включена), или к земле (микросхема выключена).

Для управления этими режимами служат выводы 10 (Mute) и 9 (Stand-by). Если напряжение на соответствующем выводе меньше, чем +1,5 вольта относительно земли (на самом деле относительно вывода 1, соединенного с землей), то режим включен — микросхема молчит, или вообще отключена. Если напряжение больше +3,5 В, то режим отключен. То есть, микросхема работает, когда напряжение и на выводе 9 и на выводе 10 больше + 3,5 вольт. Такие уровни позволяют управлять усилителем от обычных цифровых микросхем.

Если нет необходимости управлять включением микросхемы или приглушением звука, то выводы рекомендуется использовать для устранения щелчка при включении. Самый простой способ показан на рис.2 — выводы объединяются и подключаются к источнику через резистор и конденсатор. Такое включение задает задержку подачи напряжения на выводы, и в результате микросхема включается на

0,1 секунды после подачи питания и никаких щелчков не наблюдается. Конденсатор должен быть рассчитан на напряжение не меньшее, чем напряжение питания.

Рис.2. Простейший способ управления включением

Для маньяков бесшумного включения (и для наиболее качественного внешнего управления питанием) производитель рекомендует такую схему:

Рис.3. Способ управления включением, рекомендованный производителем

При подаче напряжения сначала микросхема включается с некоторой задержкой (выходит из режима Stand-by), но звука нет. После этого отключается режим Mute, и звук появляется. Выключение по идее идет в обратной последовательности — сначала Mute, после Stand-by. Это происходит из-за того, что при включении управления (подачи + ххх вольт) левый по схеме конденсатор заряжается через два резистора — медленнее, чем правый. А разряжается наоборот быстрее — через диод и один резистор 10 кОм. Диод может быть любой маломощный с допустимым обратным напряжением не менее напряжения питания. Конденсаторы также должны быть расчитаны на напряжение питания.

Только это не лучший способ управления в том случае, если все это хозяйство подключено к «плюсу» питания. Дело в том, что разряд конденсаторов цепей управления выключением происходит гораздо быстрее, чем разряд конденсаторов фильтра питания. Поэтому при включении питания все работает как и описано выше, а при отключении питания режимы Mute и StdBy включатся только тогда, когда напряжение, поступающее с блока питания на микросхему, опустится до

2 вольт. То есть, когда и так уже все замолкло.

Поэтому все эти схемы хорошо работают только на включение, тем не менее, при выключении никаких щелчков и прочих неприятных звуков не слышно — это оттого, что у разработчиков получилась очень неплохая микросхема. Для правильного управления всеми этими режимами можно предложить такую схему (в ней диод должен быть рассчитан на напряжение питания, а конденсаторы на напряжение не менее 16 вольт; R1 должен быть не больше, чем указан на схеме):

Рис.4. Способ управления включением и выключением, максимально использующий возможности управления.

Эта схема работает очень хорошо, если есть какое-то внешнее управление (или управляющее напряжение, или переключатель, как показано на схеме), и неплохо, если никакого специального управления не требуется, а напряжение подается от источника питания (переключатель S1 при этом отсутствует, а цепь, которую он разрывал — замкнута).

Работает она так. При подаче напряжения питания (замыкании S1), конденсатор С1 заряжается через резистор R3 до напряжения, задаваемого делителем R1,R2 (которое примерно равно 5 вольт). А конденсатор С2 в свою очередь заряжается от С1, поэтому он заряжается несколько дольше. Включение производится в такой последовательности: сначала включены оба режима (и Mute, и StdBy). Потом отключается режим StdBy и «внутренности» микросхемы начинают работать как надо. Через некоторое время отключается режим Mute, и сигнал проходит на выход усилителя.

Выключение переключателем. При этом С2 очень быстро разряжается через диод и малое сопротивление R2, устанавливая тем самым режим Mute. Вскоре вслед за ним разряжается и С1 (для разрядного тока R3 и R4 включены параллельно, и разряд идет быстрее), отключая напрочь всю микросхему.

Если выключателя S1 нет, то все работает почти так же. При отключении сетевого напряжения, конденсаторы фильтра питания усилителя начинают разряжаться. Напряжение питания при этом падает. Как только напряжение на делителе R1,R2 станет уменьшаться, конденсатор С2 очень быстро разряжается через диод и устанавливает режим Mute. Чуть позже разряжается С1, включая StdBy. При этом напряжение питания довольно велико (оно делится делителем R1,R2) и до отключения микросхемы никаких нежелательных звуков не возникает (когда микросхема отключается, напряжение питания примерно 10-12 вольт).

Если честно, то цепь, показанная на рисунке 4, является чересчур хорошей — микросхема качественная, и при ее выключении и так никаких щелчков нет. Но если хотите максимальной уверенности, то эта схема для вас.

Оставить комментарий

avatar
  Подписаться  
Уведомление о